

OXFORD CAMBRIDGE AND RSA EXAMINATIONS

Advanced Subsidiary General Certificate of Education Advanced General Certificate of Education

MATHEMATICS

4723

Core Mathematics 3

Specimen Paper

Additional materials: Answer booklet Graph paper List of Formulae (MF 1)

TIME 1 hour 30 minutes

INSTRUCTIONS TO CANDIDATES

- Write your Name, Centre Number and Candidate Number in the spaces provided on the answer booklet.
- Answer **all** the questions.
- Give non-exact numerical answers correct to 3 significant figures, unless a different degree of accuracy is specified in the question or is clearly appropriate.
- You are permitted to use a graphic calculator in this paper.

INFORMATION FOR CANDIDATES

- The number of marks is given in brackets [] at the end of each question or part question.
- The total number of marks for this paper is 72.
- Questions carrying smaller numbers of marks are printed earlier in the paper, and questions carrying larger numbers of marks later in the paper.
- You are reminded of the need for clear presentation in your answers.

- 1 Solve the inequality |2x+1| > |x-1|.
- 2 (i) Prove the identity

$$\sin(x+30^\circ) + (\sqrt{3})\cos(x+30^\circ) \equiv 2\cos x ,$$

where *x* is measured in degrees.

- (ii) Hence express $\cos 15^\circ$ in surd form.
- **3** The sequence defined by the iterative formula

$$x_{n+1} = \sqrt[3]{(17 - 5x_n)},$$

with $x_1 = 2$, converges to α .

- (i) Use the iterative formula to find α correct to 2 decimal places. You should show the result of each iteration. [3]
- (ii) Find a cubic equation of the form

$$x^3 + cx + d = 0$$

which has α as a root.

(iii) Does this cubic equation have any other real roots? Justify your answer. [2]

The diagram shows the curve

$$y = \frac{1}{\sqrt{(4x+1)}} \,.$$

The region R (shaded in the diagram) is enclosed by the curve, the axes and the line x = 2.

- (i) Show that the exact area of *R* is 1.
- (ii) The region *R* is rotated completely about the *x*-axis. Find the exact volume of the solid formed. [4]

[2]

[4]

[2]

[4]

5 At time t minutes after an oven is switched on, its temperature θ °C is given by

$$\theta = 200 - 180 \mathrm{e}^{-0.1t}$$
.

- (i) State the value which the oven's temperature approaches after a long time. [1]
- (ii) Find the time taken for the oven's temperature to reach 150° C. [3]
- (iii) Find the rate at which the temperature is increasing at the instant when the temperature reaches 150° C. [4]
- **6** The function f is defined by

$$f: x \mapsto 1 + \sqrt{x}$$
 for $x \ge 0$.

- (i) State the domain and range of the inverse function f^{-1} . [2]
- (ii) Find an expression for $f^{-1}(x)$. [2]
- (iii) By considering the graphs of y = f(x) and $y = f^{-1}(x)$, show that the solution to the equation

 $f(x) = f^{-1}(x)$

is
$$x = \frac{1}{2}(3 + \sqrt{5})$$
. [4]

7 (i) Write down the formula for $\tan 2x$ in terms of $\tan x$.

(ii) By letting $\tan x = t$, show that the equation

 $4\tan 2x + 3\cot x \sec^2 x = 0$

becomes

$$3t^4 - 8t^2 - 3 = 0. [4]$$

(iii) Hence find all the solutions of the equation

 $4\tan 2x + 3\cot x \sec^2 x = 0$

which lie in the interval $0 \le x \le 2\pi$.

[1]

[4]

4

The diagram shows the curve $y = (\ln x)^2$.

(i) Find
$$\frac{dy}{dx}$$
 and $\frac{d^2y}{dx^2}$. [4]

(ii) The point *P* on the curve is the point at which the gradient takes its maximum value. Show that the tangent at *P* passes through the point (0, -1). [6]

The diagram shows the curve $y = \tan^{-1} x$ and its asymptotes $y = \pm a$.

- (i) State the exact value of *a*.
- (ii) Find the value of x for which $\tan^{-1} x = \frac{1}{2}a$.

The equation of another curve is $y = 2 \tan^{-1}(x-1)$.

(iii) Sketch this curve on a copy of the diagram, and state the equations of its asymptotes in terms of a. [3]

[1]

[2]

(iv) Verify by calculation that the value of *x* at the point of intersection of the two curves is 1.54, correct to 2 decimal places. [2]

Another curve (which you are *not* asked to sketch) has equation $y = (\tan^{-1} x)^2$.

(v) Use Simpson's rule, with 4 strips, to find an approximate value for $\int_0^1 (\tan^{-1} x)^2 dx$. [3]

9

1	EITHI	$ER: 4x^2 + 4x + 1 > x^2 - 2x + 1$	M1		For squaring both sides
		i.e. $3x^2 + 6x > 0$	A1		For reduction to correct quadratic
		So $x(x+2) > 0$	M1		For factorising, or equivalent
		Hence $x < -2$ or $x > 0$	A1		For both critical values correct
			A1		For completely correct solution set
	OR:	Critical values where $2x+1 = \pm(x-1)$	M1		For considering both cases, or from graphs
		i.e. where $x = -2$ and $x = 0$	B1		For the correct value -2
		Hence $r < 2$ or $r > 0$	AI M1		For the correct value 0 For any correct method for solution set using
		Thence $x < -2$ of $x > 0$			two critical values
			A1	5	For completely correct solution set
				5	1 2
2	(i)	$\sin x(\frac{1}{2}\sqrt{3}) + \cos x(\frac{1}{2}) + (\sqrt{3})(\cos x(\frac{1}{2}\sqrt{3}) - \sin x(\frac{1}{2}))$	M1		For expanding both compound angles
			A1		For completely correct expansion
			M1		For using exact values of sin 30° and cos 30°
	:	$= \frac{1}{2}\cos x + \frac{3}{2}\cos x = 2\cos x$, as required	A1	4	For showing given answer correctly
	(ii)	$\sin 45^\circ + (\sqrt{3})\cos 45^\circ = 2\cos 15^\circ$	M1		For letting $x = 15^{\circ}$ throughout
	I	Hence $\cos 15^\circ = \frac{1+\sqrt{3}}{2\sqrt{2}}$	A1	2	For any correct exact form
		2 7 2		6	
3	(i)	$x_2 = \sqrt[3]{7} = 1.9129$	B1		For 1.91 seen or implied
		$x_2 = 1.9517, x_4 = 1.9346$	M1		For continuing the correct process
		$\alpha = 1.94$ to 2dp	A1	3	For correct value reached following x_{-} and
				•	x_6 both 1.94 to 2dp
	(ii)	$x = \sqrt[3]{(17 - 5x)} \implies x^3 + 5x - 17 = 0$	M1		For letting $x_n = x_{n+1} = x$ (or α)
			A1	2	For correct equation stated
	(iii))	<i>FITHER</i> : Graphs of $y = r^3$ and $y = 17 - 5r$ only			
	(11) 1	cross once	M1		For argument based on sketching a pair of
			1411		graphs, or a sketch of the cubic by calculator
		Hence there is only one real root	A1√		For correct conclusion for a valid reason
		<i>QB</i> : $\frac{d}{dr}(x^3 + 5x - 17) = 3x^2 + 5 > 0$	M1		For consideration of the cubic's gradient
	· · ·	dx		-	
		Hence there is only one real root	Al√	2	For correct conclusion for a valid reason
4	(i)	$\int_{0}^{2} (4x+1)^{-\frac{1}{2}} dx = \left[\frac{1}{2}(4x+1)^{\frac{1}{2}}\right]^{2} = \frac{1}{2}(2-1) = 1$	M1		For integral of the form $k(Ax+1)^{\frac{1}{2}}$
4	(1)	$\int_0^1 (4x+1)^2 dx = \left[\frac{1}{2}(4x+1)^2\right]_0^1 = \frac{1}{2}(3-1) = 1$			For integral of the form $k(4x+1)^2$
			AI M1		For correct indefinite integral
				4	For given answer correctly shown
		^			
	(ii)	$\pi \int_{0}^{2} \frac{1}{4x+1} \mathrm{d}x = \pi \left[\frac{1}{4} \ln(4x+1) \right]_{0}^{2} = \frac{1}{4} \pi \ln 9$	M1		For integral of the form $k \ln(4x+1)$
			A1		For correct $\frac{1}{4}\ln(4x+1)$, with or without π
			M1		Correct use of limits and π
			A1	4	For correct (simplified) exact value
				8	

5	(i)	200 °C	B1	1	For value 200
	(ii)	$150 = 200 - 180e^{-0.1t} \Rightarrow e^{-0.1t} = \frac{50}{180}$	M1		For isolating the exponential term
		Hence $-0.1t = \ln \frac{5}{18} \implies t = 12.8$	M1		For taking logs correctly
		10	A1	3	For correct value 12.8 (minutes)
	(iii)	$\frac{\mathrm{d}\theta}{\mathrm{d}t} = 18\mathrm{e}^{-0.1t}$	M1		For differentiation attempt
		0.15-12.0	A1		For correct derivative
		Hence rate is $18e^{-0.1 \times 12.8} = 5.0$ °C per minute	M1		For using their value from (ii) in their θ
			AI	4	For value 5.0(0)
				8	
6	(i)	Domain of f^{-1} is $r > 1$	B1		For the correct set in any notation
Ŭ	(1)	Range is $x \ge 0$	B1	2	Ditto
		If $y = 1 + \sqrt{r}$ then $r = (y - 1)^2$	н		For changing the subject, or equivalent
	(11)	Hence $f^{-1}(x) = (x-1)^2$		2	For correct expression in terms of r
		$\frac{1}{1} = \frac{1}{1} = \frac{1}$			
	(111)	The graphs intersect on the line $y = x$ Hence we sticfing $x = (x - 1)^2$	BI		For stating or using this fact
		Hence x satisfies $x = (x - 1)$	ы		For either $x = I(x)$ or $x = I(x)$
		i.e. $x^2 - 3x + 1 = 0 \Longrightarrow x = \frac{5 \pm \sqrt{3}}{2}$	M1		For solving the relevant quadratic equation
		So $x = \frac{1}{2}(3 + \sqrt{5})$ as x must be greater than 1	A1	4	For showing the given answer fully
				8	
7	(i)	$\tan 2x = \frac{2\tan x}{1 - \tan^2 x}$	B1	1	For correct RHS stated
	(ii)	$\frac{8t}{1-t^2} + 3 \times \frac{1}{t} \times (1+t^2) = 0$	B 1		For $\cot x = \frac{1}{t}$ seen
			B1		For $\sec^2 x = 1 + t^2$ seen
		Hence $8t^2 + 3(1-t^2)(1+t^2) = 0$	M1		For complete substitution in terms of <i>t</i>
		i.e. $3t^4 - 8t^2 - 3 = 0$, as required	A1	4	For showing given equation correctly
	(iii)	$(3t^2 + 1)(t^2 - 3) = 0$	M1		For factorising or other solution method
		Hence $t = \pm \sqrt{3}$	A1		For $t^2 = 3$ found correctly
		So $x = \frac{1}{3}\pi, \frac{2}{3}\pi, \frac{4}{3}\pi, \frac{5}{3}\pi$	A1		For any two correct angles
			A1	4	For all four correct and no others
				9	
1					1
1					

8	(i)	$\frac{dy}{dx} = \frac{2\ln x}{x}$	M1		For relevant attempt at the chain rule
			A1		For correct result, in any form
		$\frac{d^2 y}{dx^2} = \frac{x(2/x) - 2\ln x}{x^2} = \frac{2 - 2\ln x}{x^2}$	M1		For relevant attempt at quotient rule
			A1	4	For correct simplified answer
	(ii)	For maximum gradient, $2-2\ln x = 0 \Rightarrow x = e$	M1		For equating second derivative to zero
		Hence P is $(e, 1)$	AI A1√		For correct value e For stating or using the <i>y</i> -coordinate
		The gradient at <i>P</i> is $\frac{2}{e}$	A1√		For stating or using the gradient at <i>P</i>
		Tangent at <i>P</i> is $y-1=\frac{2}{e}(x-e)$	M1		For forming the equation of the tangent
		Hence, when $x = 0$, $y = -1$ as required	A1	6	For correct verification of $(0, -1)$
				10	
9	(i)	$a = \frac{1}{2}\pi$	B1	1	For correct exact value stated
	(ii)	$x = \tan(\frac{1}{4}\pi) = 1$	M1		For use of $x = \tan(\frac{1}{2}a)$
			A1√	2	For correct answer, following their <i>a</i>
	(iii)	y 	B1 B1		For <i>x</i> -translation of (approx) +1 For <i>y</i> -stretch with (approx) factor 2
		Asymptotes are $y = \pm 2a$	B1	3	For correct statement of asymptotes
	(iv)	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	M1		For relevant evaluations at 1.535, 1.545
		Hence graphs cross between 1.535 and 1.545	A1	2	For correct details and explanation
	(v)	Relevant values of $(\tan^{-1} x)^2$ are (approximately)	M1		For the relevant function values seen or
		0, 0.0600, 0.2150, 0.4141, 0.6169 $\frac{1}{12}$ {0+4(0.0600+0.4141)+2×0.2150+0.6169}	M1		implied; must be radians, not degrees For use of correct formula with $h = \frac{1}{2}$
		Hence required approximation is 0.245	A1	3	For correct (2 or 3sf) answer
				4	